首页 | 官方网站   微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6588篇
  免费   1306篇
  国内免费   592篇
工业技术   8486篇
  2024年   15篇
  2023年   168篇
  2022年   166篇
  2021年   221篇
  2020年   303篇
  2019年   291篇
  2018年   302篇
  2017年   374篇
  2016年   404篇
  2015年   403篇
  2014年   403篇
  2013年   445篇
  2012年   407篇
  2011年   492篇
  2010年   336篇
  2009年   383篇
  2008年   377篇
  2007年   506篇
  2006年   444篇
  2005年   390篇
  2004年   321篇
  2003年   270篇
  2002年   191篇
  2001年   176篇
  2000年   178篇
  1999年   113篇
  1998年   87篇
  1997年   55篇
  1996年   55篇
  1995年   45篇
  1994年   38篇
  1993年   37篇
  1992年   34篇
  1991年   14篇
  1990年   10篇
  1989年   15篇
  1988年   4篇
  1987年   1篇
  1986年   1篇
  1985年   3篇
  1984年   2篇
  1983年   2篇
  1982年   3篇
  1951年   1篇
排序方式: 共有8486条查询结果,搜索用时 250 毫秒
1.
Utilizing inner-crystal piezoelectric polarization charges to control carrier transport across a metal-semiconductor or semiconductor–semiconductor interface, piezotronic effect has great potential applications in smart micro/nano-electromechanical system (MEMS/NEMS), human-machine interfacing, and nanorobotics. However, current research on piezotronics has mainly focused on systems with only one or rather limited interfaces. Here, the statistical piezotronic effect is reported in ZnO bulk composited of nanoplatelets, of which the strain/stress-induced piezo-potential at the crystals’ interfaces can effectively gate the electrical transport of ZnO bulk. It is a statistical phenomenon of piezotronic modification of large numbers of interfaces, and the crystal orientation of inner ZnO nanoplatelets strongly influence the transport property of ZnO bulk. With optimum preferred orientation of ZnO nanoplatelets, the bulk exhibits an increased conductivity with decreasing stress at a high pressure range of 200–400 MPa, which has not been observed previously in bulk. A maximum sensitivity of 1.149 µS m−1 MPa−1 and a corresponding gauge factor of 467–589 have been achieved. As a statistical phenomenon of many piezotronic interfaces modulation, the proposed statistical piezotronic effect extends the connotation of piezotronics and promotes its practical applications in intelligent sensing.  相似文献   
2.
王焕彩 《阀门》2021,(1):16-20
介绍了角行程电液执行器的几种常见传动结构,分析了各种结构的力矩输出特性及与阀门配套的特点。  相似文献   
3.
This paper presents a new design of mobile micro manipulation system for robotic micro assembly where a compliant piezoelectric actuator based micro gripper is designed for handling the miniature parts and compensation of misalignment during peg-in-hole assembly is done because piezoelectric actuator has capability of producing the displacement in micron range and generates high force instantaneously. This adjusts the misalignment of peg during robotic micro assembly. The throughput/speed of mobile micro manipulation system is found for picking and placing the peg from one hole to next hole position. An analysis of piezoelectric actuator based micro gripper has been carried out where voltage is controlled through a proportional-derivative (PD) controller. By developing a prototype, it is demonstrated that compliant piezoelectric actuator based micro gripper is capable of handling the peg-in-hole assembly task in a mobile micro manipulation system.  相似文献   
4.
In this paper, an adaptive control approach is designed for compensating the faults in the actuators of chaotic systems and maintaining the acceptable system stability. We propose a state‐feedback model reference adaptive control scheme for unknown chaotic multi‐input systems. Only the dimensions of the chaotic systems are required to be known. Based on Lyapunov stability theory, new adaptive control laws are synthesized to accommodate actuator failures and system nonlinearities. An illustrative example is studied. The simulation results show the effectiveness of the design method. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
5.
Abstract

Ba0.95Ca0.05Ti1-xZrxO3 (BCTZO) ceramics were prepared by a solid state reaction method. The samples were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM) and X-ray absorption near edge structure (XANES). The ceramics exhibit a pure perovskite structure. The average grain size gradually decreases with increasing Zr concentration. XANES results indicate that the intensities of pre-edge peaks dropped with increasing Zr concentration. The BCTZO ceramic of x?=?0.05 has the optimum electrical properties with the maximum dielectric constant (ε'm), remanent polarization (2Pr), coercive electric field (2Ec) and piezoelectric charge constant (d33) of 7,244, 12.54 (μC/cm2), 5.29 (kV/cm) and 288 (pC/N), respectively.  相似文献   
6.
This paper mainly focuses on the development of pressure tracking control logic of electro-hydraulic actuators for vehicle application. This is done to improve and ensure the performance of a precise lower-level controller for evolving modern shift control logic. The required performance is obtained by hysteresis model-based feed-forward control and additional feedback control. The hysteresis and the time delay, which adversely affect pressure control, are well known nonlinear behaviors in electro-hydraulic actuators. In order to cope with the hysteresis, a novel hysteresis model is proposed based on a physical phenomenon. A mathematical model based on a characteristic curve obtained in preliminary experiments is presented using only one tuning parameter, and this model can be inverted easily to construct a feed-forward controller. In addition, a feedback controller is designed considering the stability margin of a time delay system. The feedback control inputs ensure compensation of the feed-forward errors caused by model error and uncertainty. The proposed controller is designed to lower computational cost considering applicability for production vehicles. As a result, the developed pressure controller is applied to a transmission control unit of a production vehicle and verified experimentally for various driving scenarios.  相似文献   
7.
本文介绍了混凝土结构的压电体波和表面波检测的主要进展,对两种压电声波检测的优缺点进行了总结。体波检测设备一般埋入混凝土内部,需要选择合理的检测部位,检测结果较为精确;声表面波检测无需选择特定的部位,但是检测深度有限。在实际检测工作过程中,可以联合两种方法相互验证。  相似文献   
8.
Motion of a stick-slip piezo actuator is generally controlled by the parameters related to its mechanical design and characteristics of the driving pulses applied to piezoceramic shear plates. The goal of the proposed optimization method is to find the driving pulse parameters leading to the fastest and the most reliable actuator operation. In the paper the method is tested on a rotary stick-slip piezo actuating system utilized in an atomic force microscope.The optimization is based on the measurement of the actuator response to driving pulses of different shapes and repetition frequencies at various load forces. To provide it, a computer controlled testing system generating the driving pulses, and detecting and recording the corresponding angular motion response of the actuator by a position sensitive photo detector (PSPD) in real time has been developed. To better understand and interpret the experimental results, supportive methods based on a simple analytical model and numerical simulations were used as well.In this way the shapes of the single driving pulses and values of the load force providing the biggest actuator steps were determined. Generally, the maximal steps were achieved for such a combination of the pulse shapes and load forces providing high velocities at the end of the sticking mode of the actuator motion and, at the same time, lower decelerations during the slipping mode.As for the multiple driving pulses, the pulse shapes and values of repetition frequency ensuring the sticking mode of the actuator motion during the pulse rise time together with the maximum average angular rotor velocity were specified. In this way the effective and stable operation conditions of the actuator were provided.In principle, the presented method can be applied for the testing and optimization of any linear or angular stick-slip actuator.  相似文献   
9.
This article presents an adaptive neural compensation scheme for a class of large-scale time delay nonlinear systems in the presence of unknown dead zone, external disturbances, and actuator faults. In this article, the quadratic Lyapunov–Krasovskii functionals are introduced to tackle the system delays. The unknown functions of the system are estimated by using radial basis function neural networks. Furthermore, a disturbance observer is developed to approximate the external disturbances. The proposed adaptive neural compensation control method is constructed by utilizing a backstepping technique. The boundedness of all the closed-loop signals is guaranteed via Lyapunov analysis and the tracking errors are proved to converge to a small neighborhood of the origin. Simulation results are provided to illustrate the effectiveness of the proposed control approach.  相似文献   
10.
In this study, lead-free (1 − x)Ba(Zr0.2Ti0.8)O3 − x(Ba0.7Ca0.3)TiO3 compositions are synthesized via conventional solid oxide route, and the ceramics are fabricated with normal sintering in air. The effects of composition fluctuations on dielectric, piezoelectric, and mechanical properties are investigated. The phase structure and the microstructure are analyzed with X-ray diffraction and scanning electron microscopy. The best dielectric and piezoelectric properties of εr = 11 207 and d33 = 330 pC/N were obtained for BZT−0.35BCT and BZT−0.5BCT ceramics, respectively. The mechanical behavior—in terms of Vickers hardness and compressive and flexural strengths—was investigated, and the best mechanical behavior was found in the vicinity of the phase transition boundary with x values between 0.5 and 0.6.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司    京ICP备09084417号-23

京公网安备 11010802026262号